Multi agent reinforcement learning for online layout planning and scheduling in flexible assembly systems

Author:

Kaven LeaORCID,Huke PhilippORCID,Göppert AmonORCID,Schmitt Robert H.ORCID

Abstract

AbstractManufacturing systems are undergoing systematic change facing the trade-off between the customer's needs and the economic and ecological pressure. Especially assembly systems must be more flexible due to many product generations or unpredictable material and demand fluctuations. As a solution line-less mobile assembly systems implement flexible job routes through movable multi-purpose resources and flexible transportation systems. Moreover, a completely reactive rearrangeable layout with mobile resources enables reconfigurations without interrupting production. A scheduling that can handle the complexity of dynamic events is necessary to plan job routes and control transportation in such an assembly system. Conventional approaches for this control task require exponentially rising computational capacities with increasing problem sizes. Therefore, the contribution of this work is an algorithm to dynamically solve the integrated problem of layout optimization and scheduling in line-less mobile assembly systems. The proposed multi agent deep reinforcement learning algorithm uses proximal policy optimization and consists of a decoder and encoder, allowing for various-sized system state descriptions. A simulation study shows that the proposed algorithm performs better in 78% of the scenarios compared to a random agent regarding the makespan optimization objective. This allows for adaptive optimization of line-less mobile assembly systems that can face global challenges.

Funder

Bundesministerium für Wirtschaft und Energie

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3