Managing product-inherent constraints with artificial intelligence: production control for time constraints in semiconductor manufacturing

Author:

May Marvin CarlORCID,Oberst Jan,Lanza Gisela

Abstract

AbstractContinuous product individualization and customization led to the advent of lot size one in production and ultimately to product-inherent uniqueness. As complexities in individualization and processes grow, production systems need to adapt to unique, product-inherent constraints by advancing production control beyond predictive, rigid schedules. While complex processes, production systems and production constraints are not a novelty per se, modern production control approaches fall short of simultaneously regarding the flexibility of complex job shops and product unique constraints imposed on production control. To close this gap, this paper develops a novel, data driven, artificial intelligence based production control approach for complex job shops. For this purpose, product-inherent constraints are resolved by restricting the solution space of the production control according to a prediction based decision model. The approach validation is performed in a real semiconductor fab as a job shop that includes transitional time constraints as product-inherent constraints. Not violating these time constraints is essential to avoid scrap and similarly increase quality-based yield. To that end, transition times are forecasted and the adherence to these product-inherent constraints is evaluated based on one-sided prediction intervals and point estimators. The inclusion of product-inherent constraints leads to significant adherence improvements in the production system as indicated in the real-world semiconductor manufacturing case study and, hence, contributes a novel, data driven approach for production control. As a conclusion, the ability to avoid a large majority of violations of time constraints shows the approaches effectiveness and the future requirement to more accurately integrate such product-inherent constraints into production control.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3