Development of multi-model ensembles using tree-based machine learning methods to assess the future renewable energy potential: case of the East Thrace, Turkey
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s11356-023-28649-9.pdf
Reference59 articles.
1. Acharya N, Shrivastava NA, Panigrahi BK, Mohanty UC (2014) Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim Dyn 43(5):1303–1310. https://doi.org/10.1007/s00382-013-1942-2
2. Ahmed K, Sachindra DA, Shahid S, Demirel MC, Chung ES (2019) Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol Earth Syst Sci 23(11):4803–4824. https://doi.org/10.5194/hess-23-4803-2019
3. Ahmed K, Sachindra DA, Shahid S, Iqbal Z, Nawaz N, Khan N (2020) Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmos Res 236:104806. https://doi.org/10.1016/j.atmosres.2019.104806
4. Ahsan S, Bhat MS, Alam A, Farooq H, Shiekh HA (2022) Complementary use of multi-model climate ensemble and Bayesian model averaging for projecting river hydrology in the Himalaya. Environ Sci Pollut Res 1–23. https://doi.org/10.1007/s11356-022-24913-6
5. Akinsanola AA, Zhou W (2019) Projections of West African summer monsoon rainfall extremes from two CORDEX models. Clim Dyn 52(3):2017–2028. https://doi.org/10.1007/s00382-018-4238-8
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Offshore wind-driven green hydrogen: Bridging environmental sustainability and economic viability;International Journal of Hydrogen Energy;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3