The impact of sediment, fresh and marine water on the concentration of chemical elements in water of the ice-covered lagoon

Author:

Bełdowska MagdalenaORCID,Jędruch Agnieszka,Sieńska Dorota,Chwiałkowski Wojciech,Magnuszewski Artur,Kornijów Ryszard

Abstract

AbstractThe common use of chemical elements by man has been contributing to their extraction for centuries. As a consequence, they have been directly or indirectly introduced into the biogeochemical cycle. In the framework of many conventions, mining and processing of elements are currently subject to many restrictions. However, their large load that has already been deposited in the soil and bottom sediments can be remobilised and enter the food chain. The identification of factors favouring this process is very important, especially during the period of adopting new legal regulations on limiting the emission of pollutants. It became possible in February 2018 during the persistence of ice cover on the lagoon’s surface. This allowed observation of processes, the effect of which in the absence of ice is blurred by wind mixing water. Therefore, an investigation of sources of 25 elements in a lagoon of the southern Baltic has been undertaken, based on the example of the Vistula Lagoon. The results point to the remobilisation of chemical elements (including the toxic ones) from land and bottom sediments, where they have been deposited for decades. These processes led to the accumulation of metals in certain areas of the lagoon. It may result in their uptake and accumulation in the benthic organisms inhabiting the lagoon and further transfer in the food chain. It is of major importance as the lagoons in the southern Baltic fulfil many essential functions in the scope of tourism, economy, and fishery. Thanks to restrictions on the quality of wastewater and the emission of pollutants, it has been noticed a substantial “purifying” effect of rivers, too.

Funder

National Marine Fisheries Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3