Generalized global solar radiation forecasting model via cyber-secure deep federated learning

Author:

Moradzadeh Arash,Moayyed Hamed,Mohammadi-Ivatloo Behnam,Aguiar António Pedro,Anvari-Moghaddam Amjad,Abdul-Malek Zulkurnain

Abstract

AbstractRecently, the increasing prevalence of solar energy in power and energy systems around the world has dramatically increased the importance of accurately predicting solar irradiance. However, the lack of access to data in many regions and the privacy concerns that can arise when collecting and transmitting data from distributed points to a central server pose challenges to current predictive techniques. This study proposes a global solar radiation forecasting approach based on federated learning (FL) and convolutional neural network (CNN). In addition to maintaining input data privacy, the proposed procedure can also be used as a global supermodel. In this paper, data related to eight regions of Iran with different climatic features are considered as CNN input for network training in each client. To test the effectiveness of the global supermodel, data related to three new regions of Iran named Abadeh, Jarqavieh, and Arak are used. It can be seen that the global forecasting supermodel was able to forecast solar radiation for Abadeh, Jarqavieh, and Arak regions with 95%, 92%, and 90% accuracy coefficients, respectively. Finally, in a comparative scenario, various conventional machine learning and deep learning models are employed to forecast solar radiation in each of the study regions. The results of the above approaches are compared and evaluated with the results of the proposed FL-based method. The results show that, since no training data were available from regions of Abadeh, Jarqavieh, and Arak, the conventional methods were not able to forecast solar radiation in these regions. This evaluation confirms the high ability of the presented FL approach to make acceptable predictions while preserving privacy and eliminating model reliance on training data.

Funder

QNRF

LUT University (previously Lappeenranta University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3