Emission of typical pollutants (NOX, SO2) in the oxygen combustion process with air in-leakages

Author:

Moroń WojciechORCID,Ferens Wiesław,Wach Janusz

Abstract

AbstractOxygen combustion, being an alternative to air combustion, is distinguished in a variety of modern coal management technologies by quick and easy removal of CO2 from the combustion process, which is the key merit of this oxy-fuel technology. The laboratory work conducted so far has not directly addressed the issue of air in-leakages in the oxy-fuel system. The previous studies showed that air in-leakages in the combustion system (both under the air and oxygen regime) occur and affect the combustion process. However, there are no direct research studies on the volume of air in-leakages and their impact on the individual stages of combustion, including the emission of gaseous pollutants. This article focuses on the assessment of the impact of air in-leakages on NOx and SO2 emissions for a single-stage coal-dust combustion system. Moreover, these studies were supplemented with measurements on the rate of devolatilisation of volatile matters and, in particular, on the rate of nitrogen compounds released from fuel. The obtained results of combustion in the oxy-fuel atmosphere with the following air in-leakage levels: 10, 15 and 20% were compared to combustion conditions in the air. Air in-leakages in the oxygen combustion system create an additional flow of oxygen and nitrogen appearing in the combustion area, which affects the course of pollutants and their emission. The conducted studies have shown that when adequate tightness of the combustion system is provided, it contributes to the reduced emission of nitrogen compounds.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3