Adsorption of direct blue 106 dye using zinc oxide nanoparticles prepared via green synthesis technique

Author:

Eleryan Ahmed,Aigbe Uyiosa O.,Ukhurebor Kingsley E.,Onyancha Robert B.,Hassaan Mohamed A.,Elkatory Marwa R.,Ragab Safaa,Osibote Otolorin A.,Kusuma Heri S.,El Nemr AhmedORCID

Abstract

AbstractZinc oxide nanoparticles (ZnO-NPs) have in recent times shown effective adsorption capability for the confiscation of colour contaminants from aqueous environments (aquatic ecosystems or water bodies) due to the fact that ZnO contains more functional groups. Direct blue 106 (DB106) dye was selected for this present study as a model composite due to its wide range of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications, along with its potential for impairments. This study therefore focuses on the use of DB106 dye as a model composite due to its wide range of uses in textiles (cotton and wools), woods, and paper industries, as well as their therapeutic applications and their potential for impairments. Furthermore, the surface functionalization, shape, and composite pore size were revealed by TEM, FTIR, UV, and BET techniques. The current study uses green synthesis method to prepare ZnO-NPs as an adsorbent for the DB106 dye molecules adsorption under various conditions using the batch adsorption process. The adsorption of DB106 dye to the ZnO-NPs biosorbent was detected to be pH-dependent, with optimal adsorption of DB106 (anionic) dye particles observed at pH 7. DB106 dye adsorption to the synthesized ZnO-NPs adsorbent was distinct by means of the linearized Langmuir (LNR) and pseudo-second-order (SO) models, with an estimated maximum adsorption capacity (Qm) of 370.37 mg/g. Graphical Abstract

Funder

Egyptian Science and Technological Development Fund

National Institute of Oceanography & Fisheries

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3