Groundwater chemistry affected by trace elements (As, Mo, Ni, U and V) from a burning alum shale waste deposit, Kvarntorp, Sweden

Author:

Åhlgren KristinaORCID,Sjöberg Viktor,Allard Bert,Bäckström Mattias

Abstract

AbstractWorldwide, black shales and shale waste are known to be a potential source of metals to the environment. This project demonstrates ongoing weathering and evaluates leaching processes at a 100-m-high shale waste deposit closed in the 1960s. Some deep parts of the deposit are still burning with temperatures exceeding 500 °C. To demonstrate ongoing weathering and leaching, analyses of groundwater and solid samples of shale and shale waste have been undertaken. Largest impact on groundwater quality was observed downstream the deposit, where elevated temperatures also indicate a direct impact from the burning waste deposit. Groundwater quality is largely controlled by pH and redox conditions (e.g., for arsenic, nickel, molybdenum, uranium and vanadium), and the mixture of different waste materials, including pyrite (acidic leachates) and carbonates (neutralizing and buffering pH). Analyses of shale waste from the deposit confirm the expected pyrite weathering with high concentrations of iron, nickel and uranium in the leachates. No general time trends could be distinguished for the groundwater quality from the monitoring in 2004–2019. This study has shown that black shale waste deposits can have a complex long-term impact on the surrounding environment.

Funder

Örebro University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Reference65 articles.

1. Acero P, Ayora C, Torrentó C, Nieto J-M (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139

2. Åhlgren K, Sjöberg V, Bäckström M (2018) Leaching of U, V, Ni and Mo from alum shale waste as a function of redox and pH – suggestion for a leaching method. In: Wolkersdorfer C, Sartz L, Weber A, Burgess J, Tremblay G (eds) Mine water: risk to opportunity. Proc, 11th ICARD/IMWA 2018, Pretoria, South Africa, pp 782–787

3. Åhlgren K, Sjöberg V, Allard B, Bäckström M (2020) Chemistry of acidic and neutralized alum shale pit lakes 50 years after mine closure, Kvarntorp Sweden. Mine Water Environ 39:481–497

4. Allard B, Arsenie I, Håkansson K, Karlsson S, Ahlberg A-C, Lundgren T, Collin M, Rasmuson A, Strandell E (1991) Effects of weathering on metal releases from an engineered deposit for alum shale leaching residues. Water Air Soil Pollut 57-58:431–440

5. Allard B, Bäckström M, Häller S, Karlsson S, Panova E, Grawunder A (2011) Water chemistry and trace metal concentrations in an acidic alum shale pit lake – effects of liming. In: Rüde TR, Freund A, Wolkersdorfer C (eds) Mine Water: managing the challenges. Proc, 11th IMWA, Aachen, pp 503–508

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3