Molecular taxonomical identification and phylogenetic relationships of some marine dominant algal species during red tide and harmful algal blooms along Egyptian coasts in the Alexandria region

Author:

El-Hadary Mona H.ORCID,Elsaied Hosam E.,Khalil Nehma M.,Mikhail Samia K.

Abstract

AbstractHarmful algal blooms (HABs) threaten the aquatic ecosystems due to either poisonous effects on living organisms or oxygen-consuming. So HABs’ accurate identification, including red tide, is crucial. This study aimed to molecular identification of dominant species during tide period in nine stations along Alexandria region at Egyptian costs during one year. Samples were collected weekly before water discoloration but daily during red tide intensive growth from both 50 cm below the surface and 3 m depth over the bottom from the water surface. The red tide detection was highly from early August to half of September, since its highest peak with a maximum frequency inside the Eastern Harbor. The examined cultures samples isolated during red tide had four dominant species. Peroxidase profile showed an expression pattern of three loci (Px1, Px2, and Px3) in most species. The Px2 was the only heterozygous locus among the three loci in all species. Protein profiling showed that 17 bands out of 65 were specific to the species. The phylogenetic relationships derived from profiles of protein and 18S rRNA gene operon sequences for the four isolated species were mostly similar. We identified the four dominant HABs species as Aplanochytrium sp., Chlamydomonas sp., Cryptophyceae sp., and Psammodictyon sp. based on their 18S rRNA sequences and deposited them at DDBJ/EMBL/GenBank database. Aplanochytrium sp. is recorded as a red tide causative species for the first time in the screened region despite belonging to the defunct fungi.

Funder

Damanhour University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3