Enhanced photocatalytic degradation of malachite green dye by highly stable visible-light-responsive Fe-based tri-composite photocatalysts

Author:

Mostafa Eman M.,Amdeha EnasORCID

Abstract

Abstract A novel visible-light-sensitive ZnVFeO4 photocatalyst has been fabricated by the precipitation method at different pH values for the enhanced photocatalytic degradation of malachite green (MG) dye as a representative pollutant under visible light irradiation at neutral pH conditions. The structure and optical characteristics of the prepared photocatalysts were investigated by XRD, FTIR, N2 adsorption–desorption, TEM, diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) analyses. In addition, the photocatalytic activity of ZnVFeO4 photocatalysts superior the efficiency to be more than that of the mono and bi-metal oxides of iron and iron zinc oxides, respectively. The best sample, ZnVFeO4 at pH 3, significantly enhances the degradation rate under visible light to be 12.7 × 10−3 min−1 and can retain a stable photodegradation efficiency of 90.1% after five cycles. The effect of the catalyst dose and the initial dye concentration on the photodegradation process were studied. This promising behavior under visible light may be attributed to the low bandgap and the decreased electron–hole recombination rate of the ZnVFeO4 heterostructures. The scavenger experiment confirmed that the hydroxyl radicals induced the MG photodegradation process effectively. Hence, the ZnVFeO4 is a reliable visible-light-responsive heterostructure photocatalyst with excellent potential for the photodegradation of organic pollutants in wastewater treatment.

Funder

Egyptian Petroleum Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3