Determination of alpha factors for monitoring of aeration systems with the ex situ off-gas method: experience from practical application and estimation of measurement uncertainty

Author:

Schwarz MaximilianORCID,Trippel Jana,Engelhart Markus,Wagner Martin

Abstract

AbstractPerformance of aeration systems in wastewater treatment plants (WWTP) under process conditions can be monitored with off-gas tests. The ex situ off-gas method transfers activated sludge from an adjacent aeration tank into aerated columns to determine oxygen transfer parameters (e.g., the α-factor). This method is an alternative to in situ off-gas testing with hoods at the tank surface; however, its application and measurement uncertainty have not been examined yet. We outline our experience from long-term off-gas testing with two pilot-scale test reactors (8.3 m3 volume). Global variance-based sensitivity analysis using Sobol’ indices revealed oxygen concentration in off-gas and dissolved oxygen as the most important input quantities to determine α-factors accurately. Measurement uncertainty of other instruments was negligible. These findings are transferable to in situ off-gas hoods because the methods are similar. Random measurement error of α-factors was estimated with uncertainty analysis and comparison measurements to a relative standard deviation of about ± 2.8% for our ex situ pilot setup. Diffuser fouling, biofilm growth, or sensor drift caused systematic errors avoidable by maintenance. Additional mixing of bubble column due to sludge inflow into ex situ tanks led to a systematic overestimation of α-factors at lower airflow rates. Hence, the ex situ off-gas method is not suitable to determine α-factors for the design of aeration systems but offers unique possibilities for research of oxygen transfer dynamics and development of aeration equipment because ex situ columns can be operated independently from a full-scale activated sludge tank.

Funder

Bundesministerium für Bildung und Forschung

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3