Assessment of hydrological, geological, and biological parameters of a river basin impacted by old Hg mining in NW Spain

Author:

Escudero Lucía,Ojanguren Alfredo F.,Álvarez Rodrigo,García Carmen,Pañeda Jose,Alberquilla Fernando,Ordóñez AlmudenaORCID

Abstract

AbstractMercury (Hg) is a toxic metal that can cause adverse effects for the health of ecosystems. The Caudal River is one of the main rivers in the Asturias region (NW Spain), whose basin is highly anthropized, hosting several Hg mines, closed in the last century. Arsenic (As) is also found in the mineral paragenesis of the Hg deposits, posing a greater environmental risk. In the mining sites, remaining old facilities and tailings continue to release these elements into the environment. In this work, samples of fluvial sediments and water were taken, both in areas affected by anthropic activity and in pristine areas, in order to establish the background levels for the critical elements. The mineralogical study of the sediments, combined with EDS microanalysis, is useful to identify mineralogical traps such as Fe oxides or clays to retain the As. The As content in all sampled sediments is above the threshold effect levels (TEL), the possible effect range within which adverse effects occasionally occur, according to the Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. This fact is related to a naturally high geochemical background in the basin, due to the existing mineral deposits. The PEL threshold (the probable effect range within which adverse effects frequently occur) is exceeded by more than an order of magnitude in the sediments downstream of the Hg mines. In these points, the As content in the water, exceeding 700 μg L−1 As, is also above the quality standard established in Spanish legislation. As a result, the Caudal River tributaries in the lower part of the basin do not reach a good ecological state, according to the Hydrological Planning Office, and in some cases their state is deficient, showing low richness and high dominance of macroinvertebrates. Although the concentrations decrease with distance from the source, these findings justify the low ecological quality of the affected watercourses.

Funder

Spanish Ministry of Science

Universidad de Oviedo

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3