Personal exposure of PM2.5 and metabolic syndrome markers of pregnant women in South Korea: APPO study

Author:

Jeong Yeonseong,Park Sunwha,Kwon Eunjin,Hur Young Min,You Young-Ah,Kim Soo Min,Lee Gain,Lee Kyung A.,Kim Soo Jung,Cho Geum Joon,Oh Min-Jeong,Na Sung Hun,Lee Se jin,Bae Jin-Gon,Kim Yu-Hwan,Lee Soo-Jeong,Kim Young-Han,Kim Young JuORCID,

Abstract

AbstractWe examined the association between exposure to PM2.5, focused on individual exposure level, and metabolic dysfunction during pregnancy. APPO study (Air Pollution on Pregnancy Outcome) was a prospective, multicenter, observational cohort study conducted from January 2021 to March 2023. Individual PM2.5 concentrations were calculated using a time-weighted average model. Metabolic dysfunction during pregnancy was assessed based on a modified definition of metabolic syndrome and its components, accounting for pregnancy-specific criteria. Exposure to PM2.5 during pregnancy was associated with worsened metabolic parameters especially glucose metabolism. In comparison to participants exposed to the low PM2.5 group, those exposed to high PM2.5 levels exhibited increased odds of gestational diabetes mellitus (GDM) after adjusting for confounding variables in different adjusted models. Specifically, in model 1, the adjusted odds ratio (aOR) was 3.117 with a 95% confidence interval (CI) of 1.234–7.870; in model 2, the aOR was 3.855 with a 95% CI of 1.255–11.844; in model 3, the aOR was 3.404 with a 95% CI of 1.206–9.607; and in model 4, the aOR was 2.741 with a 95% CI of 0.712–10.547. Exposure to higher levels of PM2.5 during pregnancy was associated with a tendency to worsen metabolic dysfunction markers specifically in glucose homeostasis. Further research is needed to investigate the mechanisms underlying the effects of ambient PM2.5 on metabolic dysfunction during pregnancy.

Funder

National Institute of health research project

Korea Evaluation Institute of Industrial Technology

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3