Influence of the use of remediated soil and agricultural drainage water on the safety of tomato fruits

Author:

Salem Salah H.ORCID,Saber Mohamed,Gadow Samir,Kabary Hoda,Zaghloul Alaa

Abstract

AbstractThe objective of this study is to assess the effectiveness of different techniques employed in remediating contaminated soil and wastewater ecosystems to ensure the safety of tomato fruits (Solanum lycopersicum L. var. cerasiforme) cultivated in these environments. Three biochemical techniques T1–T3, besides two controls CCU and CCT, were used to remediate contaminated soil ecosystems using rock phosphate, elemental sulfur, bentonite, phosphate-dissolving bacteria, and Thiobacillus sp. The contaminated agricultural drainage water was remediated by a down-flow hanging sponge (DHS) system. Two experiments were conducted: a pot experiment took place in the greenhouse at the National Research Center of Cairo (Egypt) and a field experiment was carried out at the basin site in the village of El-Rahawy, applying the optimal treatment(s) identified from the greenhouse experiment. The health risk assessment for potentially toxic elements (PTEs) in the harvested tomato fruits was conducted by calculating estimated daily intake (EDI) and target risk quotient (THQ) values. Results from the greenhouse experiment indicated the high effectiveness of the DHS technique in remediating El-Rahawy agricultural drainage water. The content of PTEs after remediation was significantly reduced by 100%, 93.3%, 97.8, and 77.8% for cadmium, copper, manganese, and zinc, respectively. The application of treated drainage water in employed reclaimed soil ecosystems led to a remarkable decrease in PTE levels, especially under T3 treatment; the reduction reached 89.4%, 89.5%, and 78.4% for nickel, copper, and zinc, respectively. The bioremediation technique also reduced the content of PTEs in tomato fruits harvested from both greenhouse and field experiments; the cadmium content, for example, was below detection limits in all treatments. The T3 treatment applied in the greenhouse experiment caused the highest percentage decrease among the employed PTEs in tomato fruits grown in the greenhouse. The same trend was also reached in the field experiment. Microbiological analyses of tomato fruits revealed that E. coli, Salmonella, or S. aureus bacteria were identified on tomato fruits harvested from either greenhouses or field experiments, showing that the counted total bacteria were higher under the field experiment compared to the greenhouse experiment. The health risk assessment parameter THQ was below 1.0 for all tested metals under all treatments. This means that no potential health risk is expected from consuming tomato products produced under the different employed remediation treatments. In conclusion, the employed bioremediation techniques successfully reduced the PTE content and microbial load in both soil and drainage water ecosystems and in harvested tomato fruits. Henceforth, no health risks are expected from the consumption of this product.

Funder

Science, Technology & Innovation Funding authority

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3