Investigation of the properties of a water-based acrylic dispersion modified with an ionic liquid, surfactant, and thickener

Author:

Zalewska AnnaORCID,Kowalik Joanna,Tworek Magdalena

Abstract

Abstract The sustainable development of the paint and varnish industry is a prerequisite for action to minimize the negative environmental impact of paint products. They consist not only in reducing the emission of harmful VOC substances into the atmosphere but also in modifying the composition of the paint material in order to improve the properties of the coatings and at the same time reduce the amount of waste. Selection of the appropriate composition of the water-borne composition is still a problem to be solved. Therefore, aqueous polymer dispersions of Arlberdingk AC 2514 containing an acrylic resin modified with an ionic liquid of didecyldimethylammonium nitrate (DDANO3) were tested. Non-ionic surfactants (Rokanol L-10 and Rokacet S-24), polyurethane thickener (DSX 1514), and mineral thickener (bentonite) were also used for stabilization. The influence of individual components on changes in the stability and particle size of dispersion systems was investigated. Physicomechanical tests of coatings obtained from polymer dispersion systems were also performed. Studies have shown that with the increase in the amount of DDANO3 in the system, the particle size of the varnish composition decreases and the gloss and relative hardness of the coatings decrease. The optimal amount of DDANO3 in the dispersion is 1.5% w/w. DSX 1514 increased the stability, reduced the migration rate of the dispersion particles, and improved the elasticity and impact resistance of the protective membranes. It has been shown that the stability varies depending on the type of thickener and surfactant (SAA) used. SAA increases the value of the TSI (Turbiscan Stability Index), which takes the values of 3.8 (0.3 g bentonite) and 3.6 (0.6 g bentonite), respectively, with Rokanol L-10 16% w/w. Water-soluble acrylic resin with the tested additives can be potentially used for the production of stable dispersions with extended life.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supporting Circular Economy Principles by Recycling Window Frames into Particleboard;Materials;2024-08-21

2. Waterborne Intumescent Fire-Retardant Polymer Composite Coatings: A Review;Polymers;2024-08-20

3. BUBBLE DEFECTS AND CONTROL OF THERMAL CURING OF WATERBORNE RESIN COATINGS;High Temperature Material Processes An International Quarterly of High-Technology Plasma Processes;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3