Effect of nano-TiO2 size and utilization ratio on the performance of photocatalytic concretes; self-cleaning, fresh, and hardened state properties

Author:

Şahin Hatice Gizem,Temel Müge,Koçak Gözde,Mardani AliORCID,Kara Ali

Abstract

AbstractIn this study, photocatalysis technology was used to reduce water pollution. Decolorization of Reactive Black 5 using nano-TiO2 (NT) as a photocatalyst was investigated by adsorption and degradation experiments. Effects of NT particle size and utilization ratio on the time-dependent flow performance, compressive-flexural strength, and Bohme abrasion resistance of cementitious systems were investigated. In addition to the NT-free control mixture, a total of six photocatalytic self-cleaning mortar mixtures (PSCM) were prepared using NT in two different particle sizes (28 and 38 nm) and three different ratios (0.5%, 1%, and 1.5%). The PSCM sample containing 38 nm NT exhibited superior performance in terms of photocatalytic properties compared to the 28 nm state. It was observed that the flow performance of PSCM mixtures with NT substitution is adversely affected regardless of the NT type. Mixtures containing NT with a lower particle size (28 nm) had higher compressive and flexural strengths.

Funder

TÜBİTAK

Bursa Uludağ Üniversitesi

Bursa Uludag University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3