Removal of anthraquinone dye from wastewaters by hybrid modified activated carbons

Author:

Tolkou Athanasia K.,Mitropoulos Athanasios C.,Kyzas George Z.ORCID

Abstract

Abstract Dyes are among the main environmental pollutants, due to the high amount of discharge of wastewater, lost in the dyeing process, without any further treatment. Anthraquinone dyes are stable and resistant in the aquatic system. Among the methods that have been applied to remove these dyes from wastewaters, adsorption on activated carbon has been reported as a very effective technique, and its modification with oxides and hydroxides of metals have been used to increase its surface area. In the present study, the production of activated carbon was originated by coconut shells, and a mixture of metals and metalloids, such as magnesium, silicate, lanthanum, and aluminum (AC-Mg-Si-La-Al), was used for its subsequent modification and applied to Remazol Brilliant Blue R (RBBR) removal. AC-Mg-Si-La-Al surface morphology was studied by BET, FTIR, and SEM methods. For the evaluation of AC-Mg-Si-La-Al, several parameters, such as dosage, pH, contact time, and initial RBBR concentration were studied. According to the results, in pH 5.0 ± 0.1, the dye percentage rate reached 100% by applying 0.5 g/L. Therefore, the optimal dose of 0.4 g/L and pH 5.0 ± 0.1 are selected, which leads to 99% removal of RBBR. The experimental data found to better fit to Freundlich isotherm (R2 = 0.9189) and pseudo-second-order kinetic (R2 = 0.9291) models and 4 h were the sufficient time for adsorption. According to thermodynamics, a positive value of ∆H0 (19.661 kJ/mol) suggests the endothermic nature of the process. The AC-Mg-Si-La-Al adsorbent was able to regenerate after 5 cycles of use, showing only a 17% decrease in its efficiency. Because of its effectiveness in full RBBR removal, AC-Mg-Si-La-Al could be further examined for the removal of several other dyes, even anionic or cationic. Graphical Abstract

Funder

International Hellenic University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3