Binary effects of fluoxetine and zinc on the biomarker responses of the non-target model organism Daphnia magna

Author:

Atli GülüzarORCID,Sevgiler Yusuf

Abstract

AbstractThe antidepressant effect of zinc on mammals has been documented in recent decades, and the concentration of the antidepressant fluoxetine (FLX) in aquatic environments has been rising constantly. The aim of the present study is to evaluate the combined toxicity of a serotonin reuptake inhibitor (FLX) and Zn2+ on a non-target aquatic model organism Daphnia magna. Animals were exposed to single and binary combinations of FLX (20.5 and 41 µg/L for subchronic and 41 and 82 µg/L for acute exposures) and Zn2+ (40 µg/L for subchronic and 80 µg/L for acute exposures). In vivo experiments were done for 7 days subchronic and 48 h acute exposure, while subcellular supernatants of whole Daphnia lysate (WDL) were directly treated with the same concentrations used in the acute experiments. Morphological characteristics, Ca2+-ATPase, antioxidant enzyme activities, and lipid peroxidation were examined. There was antioxidant system suppression and Ca2+-ATPase inhibition despite the diverse response patterns due to duration, concentration, and toxicant type. After acute exposure, biomarkers showed a diminishing trend compared to subchronic exposure. According to integrated biomarker response index (IBR) analysis, in vivo Zn2+ exposure was reasonably effective on the health of D. magna, whereas exposure of WDL to Zn2+ had a lesser impact. FLX toxicity increased in a concentration-dependent manner, reversed by the combined exposure. We concluded that potential pro-oxidative and adverse Ca2+-ATPase effects of FLX and Zn2+ in D. magna may also have harmful impact on ecosystem levels. Pharmaceutical exposure (FLX) should be considered along with their potential to interact with other toxicants in aquatic biota. Graphical Abstract

Funder

Çukurova Üniversitesi

Cukurova University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3