First atmospheric mercury measurements at a coastal site in the Apulia region: seasonal variability and source analysis

Author:

Martino Maria,Tassone Antonella,Angiuli Lorenzo,Naccarato Attilio,Dambruoso Paolo Rosario,Mazzone Fiorella,Trizio Livia,Leonardi Cristina,Petracchini Francesco,Sprovieri Francesca,Pirrone Nicola,D’Amore Francesco,Bencardino MariantoniaORCID

Abstract

Abstract In the framework of the Italian Special Network for Mercury (ISNM) “Reti Speciali”, a sampling campaign to monitor atmospheric mercury (Hg) was carried out at Monte Sant’Angelo (MSA). This is a coastal monitoring station in the Apulia region, representative of the Southern Adriatic area, within the Mediterranean basin. This work presents continuous Gaseous Elemental Mercury (GEM) measurements over about three years at MSA, using the Lumex RA-915AM mercury analyzer. The aim was to obtain a dataset suitable for the analysis of Hg concentrations in terms of source and transport variation. Diurnal cycles of GEM were evaluated to observe the influence of local atmospheric temperature and wind speed on potential re-emissions from surrounding sea and soil surfaces. Data were also analyzed in terms of long-range transport, using backward trajectory cluster analysis. The spatial distribution of potential sources, contributing to higher measured GEM values, was obtained employing Potential Source Contribution Function (PSCF) statistics. The influence of major Hg anthropogenic point sources, such as mining activities and coal-fuel power plants, both regionally and continentally, from mainland Europe, was observed. The role of the vegetation GEM uptake in modulating the seasonal GEM variability was also investigated. The potential of wildfire influence over the highest detected GEM levels was further examined using active fire data and the evaluation of the vegetation dryness index during the selected episodes. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3