Abstract
AbstractEfficient cleaning of contaminated water by photocatalysis has become an effective strategy in recent years due to its environmental and ecological designation. Cadmium sulfate (CdS) is an excellent photocatalyst in the visible region but has low quantum efficiency. In order to increase the photocatalytic efficiency, CdS was modified with gadolinium oxide (Gd2O3) and combined with graphene oxide (GO) nanoparticles. The estimated crystallite size (Ds) for Gd2O3, CdS/Gd2O3, and CdS/Gd2O3@GO was 29.6, 11.6, and 11.5 nm, respectively. The degradation of methylene blue (MB) reaches the highest values after 60 min under visible light irradiation with a dye concentration of (0.25 ppm). Whereas in powdered composition the efficiency of dye removal has been enhanced under UV irradiation, it reduced by increasing the MB concentration to 0.50 ppm with visible light irradiation. In addition, the CdS with/without Gd2O3 and GO were integrated into electrospun nanofibrous cellulose acetate (CA) through the electrospinning technique. The compounds of Gd2O3, CdS/Gd2O3, and CdS/Gd2O3/GO were encapsulated into CA nanofibers for the degradation of MB under visible and UV irradiation. The apparent rate constant (k) achieves a value of 0.006, 0.007, and 0.0013 min−1 while the removal efficiency reaches 41.02%, 54.71%, and 71.42% for Gd2O3@CA, CdS/Gd2O3@CA, and CdS/Gd2O3/GO@CA, respectively, after 60 min under UV irradiation.
Funder
Misr University for Science & Technology
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献