Impact of thermodynamics and kinetics on the carbon capture performance of the amine-based CO2 capture system

Author:

Kopac TurkanORCID,Demirel YaşarORCID

Abstract

AbstractSolvent-based CO2 capture is a commonly employed post-combustion technique in processes involving absorber-stripper columns. This study focused on computer simulations with equilibrium- and rate-based modeling of CO2 capture using the amine solvents 2-amino-2-methyl-1-propanol (AMP), diethanolamine (DEA), and methyl diethanolamine (MDEA) and thermodynamic methods involving electrolyte NRTL models. The objective of this study was to understand the impacts of rate-based modeling, the type of amine, and thermodynamic methods on carbon capture. Within this study, the amine-based CO2 capture process from coal-power plant flue gas was studied using Aspen Plus modeling. Simulations were also conducted to determine the impact of thermodynamics and kinetics on the CO2 capture performance of the system. The results were analyzed on the basis of captured CO2 according to the solvents and models. The equilibrium approach was mostly invalid because of the oversimplified ideal stage assumptions through the column. The lowest carbon capture capacity was obtained with MDEA, while DEA yielded the best results. A sensitivity analysis with rate-based modeling showed the significant impact of the inlet CO2 composition. The amine-based CO2 capture process simulation included solution chemistry, electrolyte thermodynamics, rigorous transport property modeling, reaction kinetics, and rate-based multistage simulation, which could be applicable to different solvent systems.

Funder

Zonguldak Bulent Ecevit University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3