Updated national emission inventory and comparison with the Emissions Database for Global Atmospheric Research (EDGAR): case of Lebanon

Author:

Shami Anwar Al,Aawar Elissar Al,Baayoun Abdelkader,Saliba Najat A.,Kushta Jonilda,Christoudias Theodoros,Lakkis IssamORCID

Abstract

AbstractPhysically based computational modeling is an effective tool for estimating and predicting the spatial distribution of pollutant concentrations in complex environments. A detailed and up-to-date emission inventory is one of the most important components of atmospheric modeling and a prerequisite for achieving high model performance. Lebanon lacks an accurate inventory of anthropogenic emission fluxes. In the absence of a clear emission standard and standardized activity datasets in Lebanon, this work serves to fill this gap by presenting the first national effort to develop a national emission inventory by exhaustively quantifying detailed multisector, multi-species pollutant emissions in Lebanon for atmospheric pollutants that are internationally monitored and regulated as relevant to air quality. Following the classification of the Emissions Database for Global Atmospheric Research (EDGAR), we present the methodology followed for each subsector based on its characteristics and types of fuels consumed. The estimated emissions encompass gaseous species (CO, NOx, SO2), and particulate matter (PM2.5 and PM10). We compare totals per sector obtained from the newly developed national inventory with the international EDGAR inventory and previously published emission inventories for the country for base year 2010 presenting current discrepancies and analyzing their causes. The observed discrepancies highlight the fact that emission inventories, especially for data-scarce settings, are highly sensitive to the activity data and their underlying assumptions, and to the methodology used to estimate the emissions.

Funder

European Regional Development Fund

American University of Beirut

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Reference59 articles.

1. Ipcc guidelines (2006) https://www.ipcc.ch/data, Accessed: April 2019

2. Ipcc guidelines (2006) volume 2, chapter 3, table 3.6.4

3. Aviation emissions and the paris agreement (2016) https://www.transportenvironment.org/sites/te/files/publications/Aviation%202030%20breifing.pdf

4. Cas statistical yearbook (2016) http://www.cas.gov.lb, Accessed: April, 2018

5. EUR (2016) European environment agency, emep/eea air pollutant emission inventory guidebook-energy industries. https://www.eea.europa.eu/publications/emep-eea-guidebook-2016/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-1-energy-industries/view

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3