Combining phytoremediation with bioenergy production: developing a multi-criteria decision matrix for plant species selection

Author:

Amabogha Obed Nadari,Garelick Hemda,Jones Huw,Purchase DianeORCID

Abstract

AbstractThe use of plants to extract metal contaminants from soils has been proposed as a cost-effective means of remediation, and utilizing energy crops for this phytoextraction process is a useful way of attaining added value from the process. To simultaneously attain both these objectives successfully, selection of an appropriate plant species is crucial to satisfy a number of imporTant criteria including translocation index, metal and drought tolerance, fast growth rate, high lignocellulosic content, good biomass production, adequate calorific value, second generation attribute, and a good rooting system. In this study, we proposed a multi-criteria decision analysis (MCDA) to aid decision-making on plant species based on information generated from a systematic review survey. Eight speciesHelianthus annuus(sunflower),Brassica juncea(Indian mustard),Glycine max(soybean),Salixspp. (willow),Populusspp. (poplar),Panicum virgatum(switchgrass),Typha latifolia(cattails), andMiscanthus sinensis(silvergrass) were examined based on the amount of hits on a number of scientific search databases. The data was normalized by estimating their min–max values and their suitability. These criteria/indicators were weighted based on stipulated research objectives/priorities to form the basis of a final overall utility scoring. Using the MCDA, sunflower and silvergrass emerged as the top two candidates for both phytoremediation and bioenergy production. The multi-criteria matrix scores assist the process of making decisions because they compile plant species options quantitatively for all relevant criteria and key performance indicators (KPIs) and its weighing process helps incorporate stakeholder priorities to the selection process.

Funder

Federal Ministry of Agriculture and Rural Development, Nigeria

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3