Complementarity of two approaches based on the use of high-resolution mass spectrometry for the determination of multi-class antibiotics in water. Photodegradation studies and non-target screenings

Author:

Vazquez Lua,Llompart MariaORCID,Dagnac Thierry

Abstract

Abstract The development of analytical methodologies to monitor different antibiotic families in water and the implementation of alternatives for their efficient elimination are a great challenge. The aim of this research was to develop a method based on solid-phase extraction followed by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry to analyse multi-class antibiotics, including macrolides, cephalosporins, fluoroquinolones, sulfonamides and diaminopyrimidines, in waters. Several parameters affecting the extraction such as the sample pH, type of sorbent and cartridge, elution volume and breakthrough volume were optimized. The method was validated in real samples, and matrix effect was assessed, demonstrating that the use of isotopically labelled surrogate compounds was mandatory to avoid standard addition calibration for each individual samples. Urban and hospital wastewater samples, as well as natural waters, were analysed, confirming the presence of 12 of the 14 target compounds at concentrations up to 3.5 µg L−1. Non-target analysis based on data-independent workflow was also performed, enabling the identification of 94 pollutants. Preliminary photodegradation experiments were also assessed, revealing the total removal of many target compounds after the first 5–10 min of UVC irradiation. In addition, 20 by-products formed after photolysis could be identified using a non-target approach.

Funder

Ministerio de Ciencia, Innovación y Universidades

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Xunta de Galicia

Universidade de Santiago de Compostela

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3