Analysis of scientific and technological trends in the incorporation of activated carbon in advanced oxidation processes—a bibliometric study

Author:

Montenegro-Apraez DiegoORCID,Machuca-Martínez Fiderman

Abstract

AbstractThere is high interest in the development of water pollution remediation technologies. Advanced oxidation processes (AOPs) are a promising alternative for the degradation of organic compounds; however, these technologies have been limited mainly by high operating costs and, in some cases, by forming byproducts, which can be more hazardous than the original pollutants. Activated carbon (AC) is a porous material that can be combined with AOP systems in various ways, given its adsorbent and catalytic characteristics. In addition, AC is a flexible, adaptable, and low-cost material. This article presents a bibliometric analysis of AOPs incorporating CA in scientific research and patents; the Scopus database was used to obtain patents and Orbit Express for patents. The most investigated AOPs incorporating AC are photocatalysis processes, Fenton processes, persulfate-based AOP, electrochemical processes, and ozonation. However, it is the persulfate-based AOP that has seen the greatest growth in scientific publications in recent years; this great interest can be related to the synergy that the process has with AC, allowing the degradation of contaminants via radical and non-radical. According to the maturity analysis of scientific publications, photocatalysis, Fenton, electrochemistry, ozonation, and persulfate technologies are in a growth stage and will reach maturity in 2034, 2042, 2040, 2034, and 2035, respectively; these technologies coupled with AC are expected to generate a greater number of patents when they reach maturity.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3