Abstract
AbstractThe predicting groundwater nitrate pollution risk, especially in terms of changes in fertilizing, has not been fully investigated so far. In particular, there is no comprehensive method to assess this risk in areas of different land use type, and not only in agricultural areas. The aim of this study was to develop a novel multicriteria methodology for groundwater nitrate pollution risk assessment, which meets these issues. A further aim was to determine how much this risk would change if the amount of organic and synthetic fertilization was reduced. An assumption was that groundwater pollution risk is a combination of the potential adverse impacts of land use, fertilization, and intrinsic groundwater vulnerability to pollution. The impact of fertilization was holistically evaluated by balancing nitrogen from spatially differentiated the size of the breeding, species of livestock, manure and synthetic fertilizers input, and spatially differentiated topsoil, with nitrogen uptake by different crops. The nitrate concentration in the leachate was used as a measure of the impact of fertilization. This concentration was compared to the natural baseline nitrate concentration in groundwater. Three fertilization scenarios for groundwater pollution risk assessment in two study areas were discussed. Under typical agricultural, climatic, soil, and geological conditions in Europe for the current total fertilization level of 95-120 kg N ha−1 groundwater nitrate pollution risk is low and moderate, but for fertilization of 150-180 kg N ha−1, a reduction in the total fertilization (synthetic and manure) by 40 to 50% may be required to achieve low risk of degradation of natural groundwater quality. Predictive simulations of groundwater nitrate pollution risk confirmed that reducing synthetic and organic fertilization has an effect, especially in areas with intensive fertilization. This method may allow for a holistic and scenario-based assessment of groundwater pollution risk and may help decision-makers introduce solutions to manage this risk under conditions of climate change, preservation of groundwater quality, and food security.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Reference49 articles.
1. Alam SMK, Li P, Fida M (2023) Groundwater nitrate pollution due to excessive use of N-fertilizers in rural areas of Bangladesh: pollution status, health risk, source contribution, and future impacts. Expo Health. https://doi.org/10.1007/s12403-023-00545-0
2. Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA/600/2–87/035, US Environmental Protection Agency, Ada, Oklahoma
3. Anas M, Liao F, Verma KK, Sarwar MA, Mahmood A, Chen ZL, Li Q, Zeng XP, Liu Y, Li YR (2020) Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol Res 53:47. https://doi.org/10.1186/s40659-020-00312-4
4. Atoui M, Agoubi B (2022) Assessment of groundwater vulnerability and pollution risk using AVI, SPI, and RGPI indexes: applied to southern Gabes aquifer system, Tunisia. Environ Sci Pollut Res 29:50881–50894. https://doi.org/10.1007/s11356-022-19309-5
5. Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2013) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. P Natl Acad Sci USA 110(52):20882–20887. https://doi.org/10.1073/pnas.1012878108
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献