Coupling ANFIS with ant colony optimization (ACO) algorithm for 1-, 2-, and 3-days ahead forecasting of daily streamflow, a case study in Poland

Author:

Aghelpour PouyaORCID,Graf RenataORCID,Tomaszewski EdmundORCID

Abstract

AbstractFinding an efficient and reliable streamflow forecasting model has always been an important challenge for managers and planners of freshwater resources. The current study, based on an adaptive neuro-fuzzy inference system (ANFIS) model, was designed to predict the Warta river (Poland) streamflow for 1 day, 2 days, and 3 days ahead for a data set from the period of 1993–2013. The ANFIS was additionally combined with the ant colony optimization (ACO) algorithm and employed as a meta-heuristic ANFIS-ACO model, which is a novelty in streamflow prediction studies. The investigations showed that on a daily scale, precipitation had a very weak and insignificant effect on the river’s flow variation, so it was not considered as a predictor input. The predictor inputs were selected by the autocorrelation function from among the daily streamflow time lags for all stations. The predictions were evaluated with the actual streamflow data, using such criteria as root mean square error (RMSE), normalized RMSE (NRMSE), and R2. According to the NRMSE values, which ranged between 0.016–0.006, 0.030–0.013, and 0.038–0.020 for the 1-day, 2-day, and 3-day lead times, respectively, all predictions were classified as excellent in terms of accuracy (prediction quality). The best RMSE value was 1.551 m3/s and the highest R2 value was equal to 0.998, forecast for 1-day lead time. The combination of ANFIS with the ACO algorithm enabled to significantly improve streamflow prediction. The use of this coupling can averagely increase the prediction accuracies of ANFIS by 12.1%, 12.91%, and 13.66%, for 1-day, 2-day, and 3-day lead times, respectively. The current satisfactory results suggest that the employed hybrid approach could be successfully applied for daily streamflow prediction in other catchment areas.

Funder

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3