Mesoporous Ag-functionalized magnetic activated carbon-based agro-waste for efficient removal of Pb(II), Cd(II), and microorganisms from wastewater

Author:

Ali Omnia I.ORCID,Zaki Eman R.,Abdalla Mohga S.,Ahmed Saber M.

Abstract

Abstract Herein, eco-friendly mesoporous magnetic activated carbon-based agro-waste nanosorbents incorporating antimicrobial silver nanoparticles (Mag@AC1-Ag and Mag@AC1-Ag) have been prepared. Various techniques (XRD, SEM/EDX, TEM, FTIR, and BET analysis) were employed to characterize the prepared nanosorbents before being utilized as novel nanosorbents to remove Pb+2 and Cd+2 ions. Mag@AC1-Ag and Mag@AC1-Ag exhibited rapid and excellent uptake of Pb+2 and Cd+2. The pseudo-second-order kinetics and the Langmuir isotherm are more suitable for the explanation of the experimental results. The thermodynamic parameters showed that the Pb+2 and Cd+2 sorption by the nanosorbents was a spontaneous and endothermic reaction. The prepared nanosorbents can be effectively regenerated using HCl and recycled up to the fifth cycle. These nanosorbents’ potential uses for eliminating Pb+2 and Cd+2 from real water samples were evaluated. Moreover, the results revealed that both Mag@AC1-Ag and Mag@AC2-Ag exhibited high antimicrobial activity against fecal coliform (gram-negative) and Bacillus subtilis (gram-positive).

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3