Forecasting annual natural gas consumption via the application of a novel hybrid model
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s11356-020-12275-w.pdf
Reference48 articles.
1. Akpinar M, Adak MF, Yumusak N, 2016. Forecasting natural gas consumption with hybrid neural networks — artificial bee colony, 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS). pp. 1-6.
2. Bai S, Wang L, Wang, X, 2017. Optimization of ejector geometric parameters with hybrid artificial fish swarm algorithm for PEM fuel cell, 2017 Chinese Automation Congress (CAC). pp. 3319-3322.
3. Bai Y, Li C (2016) Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach. Energy Build 127:571–579
4. Beyca OF, Ervural BC, Tatoglu E, Ozuyar PG, Zaim S (2019) Using machine learning tools for forecasting natural gas consumption in the province of Istanbul. Energy Econ 80:937–949
5. BP, (2019). The British Petroleum (BP) statistical review of world energy.
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep convolutional neural networks for short-term multi-energy demand prediction of integrated energy systems;International Journal of Electrical Power & Energy Systems;2024-09
2. A study on natural gas consumption forecasting in China using the LMDI-PSO-LSTM model: Factor decomposition and scenario analysis;Energy;2024-04
3. Predicting Ghana’s Daily Natural Gas Consumption Using Time Series Models;Petroleum Science and Engineering;2024-03-07
4. Application of forecasting strategies and techniques to natural gas consumption: A comprehensive review and comparative study;Engineering Applications of Artificial Intelligence;2024-03
5. Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load;Energy;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3