The impacts of earthquakes on air pollution and strategies for mitigation: a case study of Turkey

Author:

Zanoletti Alessandra,Bontempi ElzaORCID

Abstract

AbstractThis study delves into the repercussions of the 2023 earthquake in Turkey, particularity its impact on air pollution. A year post-event, it is evident that scientific literature has paid limited attention to monitoring the situation. However, the release of hazardous substances, such as asbestos, lead, and other toxins, from damaged structures poses a significant threat by contaminating nearby air, soil, and water sources, thereby jeopardizing ecosystems and public well-being. The improper disposal of waste post-earthquake and the presence of mining and oil refinery sites in the region contribute to potential air pollutants. These circumstances create challenging environments conducive to the spread of respiratory diseases, with potential long-term health and social consequences. Unfortunately, existing data gaps hinder a comprehensive understanding of the situation. This paper pioneers the reporting and analysis of data regarding potential sources of air pollution resulting from the earthquake in Turkey. It also pinpoints gaps in knowledge, outlining areas that demand further investigation. To effectively prevent and mitigate air pollution risks and associated health concerns linked to earthquakes, strategic recommendations are proposed. A key suggestion is the establishment of post-disaster air pollution monitoring systems capable of swiftly identifying emerging health issues, facilitating efficient responses, and curtailing potential long-term effects of the disaster. The paper underscores the necessity for continuous health monitoring of the affected population to mitigate possible adverse impacts on human health. These strategies play a pivotal role in reducing the likelihood of air pollution, supporting emergency response and recovery initiatives, and fostering new dedicated scientific studies.

Funder

Università degli Studi di Brescia

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3