Mediation of gaseous emissions and improving plant productivity by DCD and DMPP nitrification inhibitors: Meta-analysis of last three decades

Author:

Tufail Muhammad AammarORCID,Irfan Muhammad,Umar Wajid,Wakeel Abdul,Schmitz Ruth A.

Abstract

AbstractNitrification inhibitors (NIs), especially dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), have been extensively investigated to mitigate nitrogen (N) losses from the soil and thus improve crop productivity by enhancing N use efficiency. However, to provide crop and soil-specific guidelines about using these NIs, a quantitative assessment of their efficacy in mitigating gaseous emissions, worth for nitrate leaching, and improving crop productivity under different crops and soils is yet required. Therefore, based upon 146 peer-reviewed research studies, we conducted a meta-analysis to quantify the effect of DCD and DMPP on gaseous emissions, nitrate leaching, soil inorganic N, and crop productivity under different variates. The efficacy of the NIs in reducing the emissions of CO2, CH4, NO, and N2O highly depends on the crop, soil, and experiment types. The comparative efficacy of DCD in reducing N2O emission was higher than the DMPP under maize, grasses, and fallow soils in both organic and chemical fertilizer amended soils. The use of DCD was linked to increased NH3 emission in vegetables, rice, and grasses. Depending upon the crop, soil, and fertilizer type, both the NIs decreased nitrate leaching from soils; however, DMPP was more effective. Nevertheless, the effect of DCD on crop productivity indicators, including N uptake, N use efficiency, and biomass/yield was higher than DMPP due to certain factors. Moreover, among soils, crops, and fertilizer types, the response by plant productivity indicators to the application of NIs ranged between 35 and 43%. Overall, the finding of this meta-analysis strongly suggests the use of DCD and DMPP while considering the crop, fertilizer, and soil types. Graphical Abstract

Funder

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3