Competency of groundwater recharge of irrigated cotton field subjacent to sowing methods, plastic mulch, water productivity, and yield under climate change

Author:

Saeed Muhammad,Maqbool AhsanORCID,Ashraf Muhammad Adnan,Arshad Muhammad,Mehmood Kashif,Usman Muhammad,Farid Muhammad Arslan

Abstract

Abstract Irrigated agriculture is a foremost consumer of water resources to fulfill the demand for food and fiber with an increasing population under climate changes; cotton is no exception. Depleting groundwater recharge and water productivity is critical for the sustainable cotton crop yield peculiarly in the semiarid region. This study investigated the water productivity and cotton yield under six different treatments: three sowing methods, i.e., flat, ridge, and bed planting with and without plastic mulch. Cotton bed planting without mulch showed maximum water productivity (0.24 kg.m−3) and the highest cotton yield (1946 kg.ha−1). Plastic mulching may reduce water productivity and cotton yield. HYDRUS-1D unsaturated flow model was used to access the groundwater recharge for 150 days under six treatments after model performance evaluation. Maximum cumulative recharge was observed 71 cm for the flat sowing method without plastic mulch. CanESM2 was used to predict climate scenarios for RCP 2.6, 4.5, and 8.5 for the 2050s and 2080s by statistical downscale modeling (SDSM) using historical data from 1975 to 2005 to access future groundwater recharge flux. Average cumulative recharge flux declined 36.53% in 2050 and 22.91% in 2080 compared to 2017 without plastic mulch. Multivariate regression analysis revealed that a maximum 23.78% reduction in groundwater recharge could influence future climate change. Further study may require to understand the remaining influencing factor of depleting groundwater recharge. Findings highlight the significance of climate change and the cotton sowing method while accessing future groundwater resources in irrigated agriculture.

Funder

Instituto de Agricultura Sostenible

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3