Biomarker development for neonicotinoid exposure in soil under interaction with the synergist piperonyl butoxide in Folsomia candida

Author:

Bakker RubenORCID,Ekelmans Astrid,Xie Liyan,Vooijs Riet,Roelofs Dick,Ellers Jacintha,Hoedjes Katja M.,van Gestel Cornelis A. M.

Abstract

AbstractPesticide toxicity is typically assessed by exposing model organisms to individual compounds and measuring effects on survival and reproduction. These tests are time-consuming, labor-intensive, and do not accurately capture the effect of pesticide mixtures. Moreover, it is unfeasible to screen the nearly infinite combinations of mixtures for synergistic effects on model organisms. Therefore, reliable molecular indicators of pesticide exposure have to be identified, i.e., biomarkers. These biomarkers can form the basis of rapid and economical screening procedures to assess the toxicity of pesticides even under synergistic interaction with other pollutants. In this study, we screened the expression patterns of eight genes for suitability as a biomarker for neonicotinoid exposure in the soil ecotoxicological model Folsomia candida (springtails). Springtails were exposed to the neonicotinoids imidacloprid and thiacloprid either alone or with various levels of piperonyl butoxide (PBO), which inhibits cytochrome P450 enzymes (CYPs): a common point of synergistic interaction between neonicotinoid and other pesticides. First, we confirmed PBO as a potency enhancer for neonicotinoid toxicity to springtail fecundity, and then used it as a tool to confirm biomarker robustness. We identified two genes that are reliably indicative for neonicotinoid exposure even under metabolic inhibition of CYPs by PBO, nicotinic acetylcholine receptor–subunit alpha 1 (nAchR) and sodium-coupled monocarboxylate transporter (SMCT). These results can form the basis for developing high-throughput screening procedures for neonicotinoid exposure in varying mixture compositions.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3