Soil water solutes reduce the critical micelle concentration of quaternary ammonium compounds

Author:

Mulder InesORCID,Schmittdiel Malte,Frei Henning,Hofmann Laura,Gerbig Dennis,Siemens Jan

Abstract

AbstractQuaternary alkyl ammonium compounds (QAACs) are produced in large quantities for use as surfactants and disinfectants and also found in soils, sediments, and surface waters, where they are potentially involved in the selection of antibiotic resistance genes. Micelle formation influences fate and effects of QAACs. The critical micelle concentration (CMC) of six homologs of benzylalkylammonium chlorides (BAC) was determined in deionized water, 0.01 M CaCl2 solution, and aqueous soil extracts, using both spectrofluorometric and tensiometric methods. Additionally, eight organic model compounds were employed at concentrations of 15 mg C L−1 as background solutes in order to test the effect of dissolved organic carbon (DOC) on CMCs. Results found CMCs decreased with an increasing length of the alkyl chain from 188 mM for BAC-C8 to 0.1 mM for BAC-C18. Both methods yielded similar results for measurements in water and CaCl2 solution; however, the spectrofluorescence method did not work for soil extracts due to fluorescence quenching phenomena. In soil extracts, CMCs of BAC-C12 were reduced below 3.7 mM, while the CMC reduction in soil extracts was less pronounced for BAC-C16. Besides ionic strength, molecular structures of BACs and dissolved organic compounds also affected the CMC. The number of carboxyl groups and small molecular weights of the DOC model compounds reduced the CMCs of BAC-C12 and BAC-C16 at pH 6. This study highlights that CMCs can be surpassed in soil solution, pore waters of sediments, or other natural waters even at (small) concentrations of QAACs typically found in the environment.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3