Abstract
AbstractQuaternary alkyl ammonium compounds (QAACs) are produced in large quantities for use as surfactants and disinfectants and also found in soils, sediments, and surface waters, where they are potentially involved in the selection of antibiotic resistance genes. Micelle formation influences fate and effects of QAACs. The critical micelle concentration (CMC) of six homologs of benzylalkylammonium chlorides (BAC) was determined in deionized water, 0.01 M CaCl2 solution, and aqueous soil extracts, using both spectrofluorometric and tensiometric methods. Additionally, eight organic model compounds were employed at concentrations of 15 mg C L−1 as background solutes in order to test the effect of dissolved organic carbon (DOC) on CMCs. Results found CMCs decreased with an increasing length of the alkyl chain from 188 mM for BAC-C8 to 0.1 mM for BAC-C18. Both methods yielded similar results for measurements in water and CaCl2 solution; however, the spectrofluorescence method did not work for soil extracts due to fluorescence quenching phenomena. In soil extracts, CMCs of BAC-C12 were reduced below 3.7 mM, while the CMC reduction in soil extracts was less pronounced for BAC-C16. Besides ionic strength, molecular structures of BACs and dissolved organic compounds also affected the CMC. The number of carboxyl groups and small molecular weights of the DOC model compounds reduced the CMCs of BAC-C12 and BAC-C16 at pH 6. This study highlights that CMCs can be surpassed in soil solution, pore waters of sediments, or other natural waters even at (small) concentrations of QAACs typically found in the environment.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献