Copper, lead and zinc interactions during phytoextraction using Acer platanoides L.—a pot trial

Author:

Mleczek MirosławORCID,Budka Anna,Gąsecka Monika,Budzyńska Sylwia,Drzewiecka Kinga,Magdziak Zuzanna,Rutkowski Paweł,Goliński Piotr,Niedzielski Przemysław

Abstract

Abstract Of the many environmental factors that modulate the phytoextraction of elements, little has been learnt about the role of metal interactions. The study aimed to show how different concentrations of Cu, Pb and Zn in the cultivation medium influenced the biomass, plant development and phytoextraction abilities of Acer platanoides L. seedlings. Additionally, the impact on the content and distribution of Ca, K, Mg and Na in plant parts was studied with an analysis of phenols. Plants treated with a mixture of two metals were characterised by lower biomass of leaves and higher major elements content jointly than those grown in the salt of one element. Leaves of A. platanoides cultivated in Pb5 + Zn1, Pb1 + Zn1 and Pb1 + Zn5 experimental systems were characterised by specific browning of their edges. The obtained results suggest higher toxicity to leaves of Pb and Zn present simultaneously in Knop solution than Cu and Pb or Cu and Zn, irrespective of the mutual ratio of the concentrations of these elements. Antagonism of Cu and Zn concerning Pb was clearly shown in whole plant biomass when one of these elements was in higher concentration (5 mmol L−1) in solution. In the lowest concentrations (1 mmol L−1), there was a synergism between Cu and Zn in plant roots. Plants exposed to Zn5, Cu1 + Pb5, Pb5 + Zn1 and Cu1 + Zn1 were characterised by higher total phenolic content than the rest plants. Both the presence and the concentration of other elements in the soil are significant factors that modulate element uptake, total phenolic content, and plant development. Graphical Abstract

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3