A comprehensive evaluation of two sample treatment procedures for the determination of emerging and historical halogenated flame retardants in biota

Author:

Tolosa ImmaORCID,Huertas David,Choyke Sarah,Sander Sylvia,Aminot Yann

Abstract

AbstractTwo different sample preparation protocols for the determination of 37 emerging and historical halogenated flame retardants (HFRs) in marine tissues were compared with regards to extraction recovery, lipid removal efficiency, repeatability, reproducibility, and ability to measure sub-ng g−1 (dry weight) concentrations in marine biota. One method involved a purification step using gel permeation chromatography (GPC) followed by a HPLC fractionation step on a Partisil amino-cyano normal phase (GPC-Partisil procedure) and the other more traditional method was based on sulphuric acid treatment followed by silica column fractionation (H2SO4-silica procedure). The samples were analysed by gas chromatography (GC) and liquid chromatography (LC) tandem mass spectrometry (MS/MS). Sample fractionation in both methods enabled unique sample preparation procedures to isolate the GC from the LC amenable compounds. Both methods could remove > 99% of the lipids which was necessary prior to GC- and LC-MS/MS analyses. The majority of the target compounds (70%) had acceptable recoveries between 60–120% for both methods. However, the sulphuric acid treatment resulted in the degradation of the TBP-AE and the silica column fractionation resulted in the loss of BEH-TEBP and the elution of PBB-Acr and TBBPA-BME in the unsuitable fraction. High recoveries of DBE-DBCH (α+β), EHTBB, BTBPE, BEH-TEBP, and PBB-Acr were attributed to matrix effects, suggesting the need to use isotope-labelled surrogate standards of the target compounds. The optimisation of the silica column chromatography, GPC, and Partisil fractionation is described and discussed to afford easy implementation of the method. The method using GPC followed by Partisil fractionation is more efficient and more reproducible than the sulphuric acid-silica procedure. The application of this method to marine biota reference materials revealed the presence of relatively high concentrations of DBE-DBCH isomers and BDE-47 in fish samples. The method detection limits comply with the recommendations of the European Commission.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Reference41 articles.

1. Airaksinen R, Hallikainen A, Rantakokko P, Ruokojärvi P, Vuorinen PJ, Mannio J, Kiviranta H (2015) Levels and congener profiles of PBDEs in edible baltic, freshwater, and farmed fish in Finland. Environ Sci Technol 49:3851–3859. https://doi.org/10.1021/es505266p

2. Aminot Y, Lanctôt C, Bednarz V, Robson WJ, Taylor A, Ferrier-Pagès C, Metian M, Tolosa I (2020) Leaching of flame-retardants from polystyrene debris: Bioaccumulation and potential effects on coral. Mar Pollut Bull 151:110862. https://doi.org/10.1016/j.marpolbul.2019.110862

3. Arsenault G, Lough A, Marvin C, McAlees A, McCrindle R, MacInnis G, Pleskach K, Potter D, Riddell N, Sverko E, Tittlemier S, Tomy G (2008) Structure characterization and thermal stabilities of the isomers of the brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane. Chemosphere 72:1163–1170. https://doi.org/10.1016/j.chemosphere.2008.03.044

4. Aznar-Alemany O, Trabalon L, Jacobs S, Barbosa VL, Tejedor MF, Granby K, Kwadijk C, Cunha SC, Ferrari F, Vandermeersch G, Sioen I, Verbeke W, Vilavert L, Domingo JL, Eljarrat E, Barcelo D (2017) Occurrence of halogenated flame retardants in commercial seafood species available in European markets. Food Chem Toxicol 104:35–47. https://doi.org/10.1016/j.fct.2016.12.034

5. Aznar-Alemany Ò, Aminot Y, Vilà-Cano J, Köck-Schulmeyer M, Readman JW, Marques A, Godinho L, Botteon E, Ferrari F, Boti V, Albanis T, Eljarrat E, Barceló D (2018) Halogenated and organophosphorus flame retardants in European aquaculture samples. Sci Total Environ 612:492–500

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3