Estimation of the water quality of a large urbanized river as defined by the European WFD: what is the optimal sampling frequency?

Author:

Vilmin Lauriane,Flipo Nicolas,Escoffier Nicolas,Groleau Alexis

Abstract

Abstract Assessment of the quality of freshwater bodies is essential to determine the impact of human activities on water resources. The water quality status is estimated by comparing indicators with standard thresholds. Indicators are usually statistical criteria that are calculated on discrete measurements of water quality variables. If the time step of the measured time series is not sufficient to fully capture the variable’s variability, the deduced indicator may not reflect the system’s functioning. The goal of the present work is to assess, through a hydro-biogeochemical modeling approach, the optimal sampling frequency for an accurate estimation of 6 water quality indicators defined by the European Water Framework Directive (WFD) in a large human-impacted river, which receives large urban effluents (the Seine River across the Paris urban area). The optimal frequency depends on the sampling location and on the monitored variable. For fast varying compounds that originate from urban effluents, such as PO $_{4}^{3-}$ 4 3 , NH $_{4}^{+}$ 4 + and NO $_{2}^{-}$ 2 , a sampling time step of one week or less is necessary. To be able to reflect the highly transient character of bloom events, chl a concentrations also require a short monitoring time step. On the contrary, for variables that exert high seasonal variability, as NO $_{3}^{-}$ 3 and O 2, monthly sampling can be sufficient for an accurate estimation of WFD indicators in locations far enough from major effluents. Integrative water quality variables, such as O 2, can be highly sensitive to hydrological conditions. It would therefore be relevant to assess the quality of water bodies at a seasonal scale rather than at annual or pluri-annual scales. This study points out the possibility to develop smarter monitoring systems by coupling both time adaptative automated monitoring networks and modeling tools used as spatio-temporal interpolators.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3