Green biosourced composite for efficient reactive dye decontamination: immobilized Gibberella fujikuroi on maize tassel biomatrix

Author:

Celik SemaORCID,Kurtulus Tas Selen,Sayin Fatih,Akar Tamer,Tunali Akar Sibel

Abstract

AbstractBiosorptive treatment with microbial biomass is regarded as an environmentally friendly and effective way to reduce dye contamination in contaminated aquatic environments. Immobilizing microbial cells for use in this process can significantly improve their effectiveness as biosorbents in the water treatment process. The current investigation searches for a sustainable and environmentally friendly approach to decolorization by employing a green biocomposite material sorbent system (ZM@GFC) created by immobilizing fungal cells (Gibberella fujikuroi) on maize tassel tissues to efficiently remove Reactive Yellow 2 (RY2) from contaminated water sources. Batch and dynamic flow tests were performed to evaluate the biodecolorization properties of the newly created immobilized biomaterial as well as the effects of several essential operating conditions factors on the sorption behavior. Biosorption yields of 95.7% and 90.0% in batch and dynamic modes were achieved for experimental dye decolorization. The biosorption of RY2 by ZM@GFC occurred fast and achieved equilibrium within 60 min. The pseudo-second-order kinetic model elucidated the dye biosorption onto ZM@GFC. The Langmuir model provided a more accurate representation of the results than the Freundlich model. At the same time, Redlich-Peterson isotherm demonstrated the best level of agreement with the experimental data. These findings indicate that the biosorption mechanism predominantly involved the formation of a monolayer covering and that the energy properties of the ZM@GFC surface were uniform. The breakthrough capacity at the exhaustion time was 537.32 mg g−1. The predicted cost of generating ZM@GFC was anticipated to be 61.03 USD/kg. The investigations on safe disposal demonstrated that the biosorption process did not generate any secondary pollution. In conclusion, using maize tassel tissue as an immobilized decolorization agent offers a possible method for removing reactive azo dye pollutants from the aquatic medium that is both economical and environmentally benign.

Funder

Eskişehir Osmangazi Üniversitesi

Eskisehir Osmangazi University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3