Supercritical water oxidation of phenol and process enhancement with in situ formed Fe2O3 nano catalyst

Author:

Al-Atta Ammar,Sher FarooqORCID,Hazafa Abu,Zafar Ayesha,Iqbal Hafiz M. N.,Karahmet Emina,Lester Edward

Abstract

AbstractDuring the past few decades, the treatment of hazardous waste and toxic phenolic compounds has become a major issue in the pharmaceutical, gas/oil, dying, and chemical industries. Considering polymerization and oxidation of phenolic compounds, supercritical water oxidation (SCWO) has gained special attention. The present study objective was to synthesize a novel in situ Fe2O3nano-catalyst in a counter-current mixing reactor by supercritical water oxidation (SCWO) method to evaluate the phenol oxidation and COD reduction at different operation conditions like oxidant ratios and concentrations. Synthesized nano-catalyst was characterized by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). TEM results revealed the maximum average particle size of 26.18 and 16.20 nm for preheated and non-preheated oxidant configuration, respectively. XRD showed the clear peaks of hematite at a 2θ value of 24, 33, 35.5, 49.5, 54, 62, and 64 for both catalysts treated preheated and non-preheated oxidant configurations. The maximum COD reduction and phenol oxidation of about 93.5% and 99.9% were observed at an oxidant ratio of 1.5, 0.75 s, 25 MPa, and 380 °C with a non-preheated H2O2 oxidant, while in situ formed Fe2O3nano-catalyst showed the maximum phenol oxidation of 99.9% at 0.75 s, 1.5 oxidant ratio, 25 MPa, and 380 °C. Similarly, in situ formed Fe2O3 catalyst presented the highest COD reduction of 97.8% at 40 mM phenol concentration, 1.0 oxidant ratio, 0.75 s residence time, 380 °C, and 25 MPa. It is concluded and recommended that SCWO is a feasible and cost-effective alternative method for the destruction of contaminants in water which showed the complete conversion of phenol within less than 1 s and 1.5 oxidant ratio.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3