Nephrotoxic effect of heavy metals and the role of DNA repair gene among secondary aluminum smelter workers

Author:

Moubarz GehanORCID,Mohammed Atef M. F.,Saleh Inas A.,Shahy Eman M.,Helmy Mona A.

Abstract

Abstract This study aims to estimate the association between some heavy metals in suspended particulate matter (SPM) and kidney damage among workers at different departments in a secondary aluminum production plant. It also investigates the association between Xeroderma Pigmentosum complementation group D (XPD) gene polymorphisms and worker’s susceptibility to kidney dysfunction. It was conducted on 30 workers from the administrative departments and 147 workers from different departments in the production line. Estimation of some heavy metals (Al, Co, Ni, Cu, Pb, and Cd) in suspended particulate matter (SPM) is done. Also, urinary levels of those metals were measured for all workers. Kidney injury molecule 1 (KIM-1), clusterin levels, and XPD protein level were estimated. Genotyping of XPD gene polymorphisms was performed. The measured annual average concentrations of the estimated heavy metals were lower than the permissible limits. Gravity area had the maximum concentration of metals with a higher Al average daily dose and hazardous index > 1. Kidney injury biomarkers (clusterin and KIM-1) were increased significantly (p < 0.05) while XPD protein showed the lowest levels among workers at the gravity and cold rolling areas. XPD Asn/Asp genotype was more dominant among those workers (85.7%). Conclusion: aluminum workers are at risk of kidney disorders due to heavy metal exposure. The individual’s susceptibility to the diseases is related to the DNA repair efficiency mechanisms. The defect in XPD protein represents a good indicator of susceptibility to the disease. KIM-1 and clusterin estimation is a predictor biomarker for early-staged kidney diseases.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3