High-capacity adsorbents from stainless steel slag for the control of dye pollutants in water

Author:

Plaza Lorenzo,Castellote Marta,Nevshupa Roman,Jimenez-Relinque Eva

Abstract

AbstractAdsorbent materials for the control of dye pollutants in water were synthetized from stainless steel slag (SSS) using different acid-base treatments. Using HCl (SS-Cl) and HNO3 (SS-NO3) produced high-capacity adsorbents, with BET areas of 232 m2/g and 110 m2/g respectively. Specifically, the SS-Cl had a structure of amorphous silica sponge. Treatment with H2SO4 (SS-SO4) did not enhance the adsorption capabilities with respect to the raw sample (SSS). Activated carbon (AC) was also tested as reference. The materials were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), N2 adsorption-desorption isotherms, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) zeta potential, and infrared spectroscopy (FTIR). Batch adsorption experiments with methylene blue (MB) showed that the maximum sorption capacities were 9.35 mg/g and 8.97 mg/g for SS-Cl and SS-NO3 at 240 h, respectively. These values, even at slower rate, were close to the adsorption capacity of the AC (9.72 mg/g). This behavior has been attributed to the high porosity in the range of nanopores (0.6–300 nm) and the high-surface area for both samples. Preferential involvement of certain functional groups in the adsorption of dye ions on their surface indicative of chemisorption has been found. Although optimization, repeatability, and reproducibility of the process and environmental assessment have to be done before practical applications, these preliminary results indicate that application of these cost-effective adsorbents from raw SSS may be used in water pollution treatment and contribute to the sustainable development of the steel manufacturing industry.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3