Development of response surface method prediction model for traffic-related roadside noise levels based on traffic characteristics

Author:

Elkafoury Ahmed,Elboshy Bahaa,Darwish Ahmed MahmoudORCID

Abstract

AbstractRecently, several urban areas are trying to mitigate the environmental impacts of traffic, where noise pollution is one of the main consequences. Thus, studying the determinants of traffic-related noise generation and developing a model that predicts the level of noise by controlling the influencing factors are crucial for transportation planning purposes. This research aims at utilizing the response surface method (RSM) to develop a robust statistical prediction model of traffic-related noise levels and optimize different traffic characteristics’ ranges to reduce the expected noise levels. The results indicate that the rate of Leq increase is higher at traffic flow values less than the 1204 veh/h. The interaction effect of flow-speed and flow-heavy vehicle percentage pairs shows that Leq has peak values around 45.8 km/h and 28.71%, respectively, with almost symmetric value distribution about those center points. The main effects study indicates a direct effect of traffic flow, speed, density, and traffic composition on roadside noise levels. The prediction model has good representativeness of observed noise levels by predicted noise levels as the model has a high coefficient of determination (R2 = 95.87% and R2 adj = 92.26%) with a significance level of 0.0036. Then, the research presents a methodology to perform an optimization of the roadside noise level by defining traffic characteristics that can keep the noise level below 65 dB(A) or minimize noise level. Decision-makers could use the proposed method to control the roadside noise level.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3