Developing a boosted decision tree regression prediction model as a sustainable tool for compressive strength of environmentally friendly concrete
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Link
https://link.springer.com/content/pdf/10.1007/s11356-021-15662-z.pdf
Reference45 articles.
1. Abuodeh OR, Abdalla JA, Hawileh RA (2020) Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques. Appl Soft Comput J 95:106552. https://doi.org/10.1016/j.asoc.2020.106552
2. Al-Shamiri AK, Kim JH, Yuan TF, Yoon YS (2019) Modeling the compressive strength of high-strength concrete: an extreme learning approach. Constr Build Mater 208:204–219. https://doi.org/10.1016/j.conbuildmat.2019.02.165
3. Al-Shamiri AK, Yuan TF, Kim JH (2020) Non-tuned machine learning approach for predicting the compressive strength of high-performance concrete. Materials (Basel) 13:1–15. https://doi.org/10.3390/ma13051023
4. Aprianti E, Shafigh P, Bahri S, Farahani JN (2015) Supplementary cementitious materials origin from agricultural wastes - a review. Constr Build Mater 74:176–187
5. Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. Methods Mol Biol. https://doi.org/10.1007/978-1-60327-241-4_13
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of coal gangue volcanic ash activity based on machine learning;Construction and Building Materials;2024-09
2. Enhancing compressive strength and sustainability: a machine learning approach to recycled brick and tile concrete mix design;Materials Today Communications;2024-08
3. Use of explainable machine learning models in blast load prediction;Engineering Structures;2024-08
4. Deep learning–based prediction of compressive strength of eco-friendly geopolymer concrete;Environmental Science and Pollution Research;2024-06-07
5. Systematic literature review on the application of machine learning for the prediction of properties of different types of concrete;PeerJ Computer Science;2024-05-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3