Mercury accumulation efficiency of different biomonitors in indoor environments: the case study of the Central Italian Herbarium (Florence, Italy)

Author:

Ciani Francesco,Fornasaro Silvia,Benesperi Renato,Bianchi Elisabetta,Cabassi Jacopo,Di Nuzzo Luca,Grifoni Lisa,Venturi Stefania,Costagliola Pilario,Rimondi ValentinaORCID

Abstract

AbstractBiomonitoring studies are often employed to track airborne pollutants both in outdoor and indoor environments. In this study, the mercury (Hg) sorption by three biomonitors, i.e., Pinus nigra bark, Pseudovernia furfuracea lichen, and Hypnum cupressiforme moss, was investigated in controlled (indoor) conditions. In comparison to outdoor environments, controlled conditions offer the opportunity to investigate more in detail the variables (humidity, temperature, pollutants speciation, etc.) that control Hg uptake. The biomonitors were exposed in two distinct periods of the year for 2 and 12 months respectively, in the halls of the Central Italian Herbarium (Natural History Museum of the University of Florence, Italy), which are polluted by Hg, due to past plant sample treatments. The Hg sorption trend was monitored every 3 weeks by recording: (i) the Hg content in the substrata, (ii) gaseous elemental mercury (GEM) concentrations in the exposition halls, (iii) temperature, (iv) humidity, and (v) particulate matter (PM) concentrations. At the end of the experiment, Hg concentrations in the biomonitors range from 1130 ± 201 to 293 ± 45 μg kg−1 (max–min) in barks, from 3470 ± 571 to 648 ± 40 μg kg−1 in lichens, and from 3052 ± 483 to 750 ± 127 μg kg−1 in mosses. All the biomonitors showed the highest Hg accumulation after the first 3 weeks of exposure. Mercury concentrations increased over time showing a continuous accumulation during the experiments. The biomonitors demonstrated different Hg accumulation trends in response to GEM concentrations and to the different climatic conditions (temperature and humidity) of the Herbarium halls. Barks strictly reflected the gaseous Hg pollution, while lichen and moss accumulation was also influenced by the climatic conditions of the indoor environment. Mercury bound to PM seemed to provide a negligible contribution to the biomonitors final uptake.

Funder

Università degli Studi di Firenze

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3