Can rare earth elements be recovered from abandoned mine tailings by means of electrokinetic-assisted phytoextraction?

Author:

Medina-Díaz Hassay Lizeth,López-Bellido Francisco Javier,Alonso-Azcárate Jacinto,Fernández-Morales Francisco Jesús,Rodríguez LuisORCID

Abstract

AbstractGiven the high impact of traditional mining, the recovery of rare earth elements (REEs) from hazardous waste materials could become an option for the future in accordance with the principles of the circular economy. In this work, the technical feasibility of REEs recovery from metal mine tailings has been explored using electrokinetic-assisted phytoremediation with ryegrass (Lolium perenne L.). Phytoextraction combined with both AC current and DC current with reversal polarity was applied (1 V cm−1, 8 h day−1) to real mine tailings containing a total concentration of REEs (Sc, Y, La, Ce, Pr, and Nd) of around 146 mg kg−1. Changes in REEs geochemical fractionation and their concentrations in the soil pore water showed the mobilization of REEs caused by plants and electric current; REE availability was increased to a higher extent for combined electrokinetic-assisted phytoextraction treatments showing the relevant role of plants in the process. Our results demonstrated the initial hypothesis that it is feasible to recover REEs from real metal mining waste by phytoextraction and that the performance of this technology can be significantly improved by applying electric current, especially of the AC type, which increased REE accumulation in ryegrass in the range 57–68% as compared to that of the treatment without electric field application.

Funder

Ministerio de Ciencia e Innovación

Junta de Comunidades de Castilla-La Mancha

Universidad de Castilla-La Mancha

Universidad de Castilla la Mancha

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3