Bibliometric research analysis of molecularly imprinted polymers (MIPs): evidence and research activity dynamics

Author:

Mittas Nikolaos,Gkika Despina A.,Georgiou Konstantinos,Alodhayb Abdullah N.,AbdelAll Naglaa,Khouqeer Ghada A.,Kyzas George Z.ORCID

Abstract

AbstractThe escalating issue of water pollution has become a worldwide issue that has captured the attention of numerous scientists. Molecularly imprinted polymers (MIPs) have emerged as adaptable materials with exceptional attributes, including easy synthesis, low cost, remarkable durability, long life, and accessibility. These attributes have motivated researchers to develop novel materials based on MIPs to tackle hazardous contaminants in environmental matrices. The purpose of this paper was to conduct a bibliometric analysis on MIPs’ publications, in order to shed light on the developments and focus points of the field. The selected publications were obtained from Scopus database and subjected to a filtering process, resulting in 11,131 relevant publications. The analysis revealed that the leading publication source (journal) is Biosensors and Bioelectronics; the mostly employed keywords are solid-phase extraction, electrochemical sensor, and molecular recognition; and the top contributing countries are China, Iran, and the USA. The Latent Dirichlet Allocation (LDA) algorithm was used for extracting thematic axes from the textual content of the publications. The results of the LDA model showcase that the topic of synthesis and performance of MIPs for environmental applications can be considered as the most dominant topic with a share value of 72.71%. From the analysis, it can be concluded that MIPs are a cross-disciplinary research field.

Funder

Deanship of Scientific Research, Imam Mohammed Ibn Saud Islamic University

International Hellenic University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3