Effect of green fuel and green lubricant with metallic nanoparticles on emissions of HC, CO, NOx, and smoke for a compression ignition engine

Author:

Barboza Augustine B. V.,Dinesha PijakalaORCID,Rosen Marc A.

Abstract

AbstractThe United Nations Sustainable Development Goals (SDGs) are imperative from the point of view of protecting the environment by employing sustainable options. Considerable research has been carried out in the transportation sector to meet this objective. Here, the influence is assessed of epoxidised gingelly oil methyl ester biolubricant with alumina (Al2O3) nanoparticles on the performance and emissions of a single cylinder 0.66-L capacity direct injection compression ignition engine driven by gingelly B20 biodiesel. Engine tests are carried out with gingelly B20 biodiesel as a fuel, and gingelly methyl ester (B100), epoxidised gingelly methyl ester (B100E), and epoxidised gingelly methyl ester (B100E) mixed with 0.5%, 1.0%, and 1.5% w/w alumina (Al2O3) nanoparticles as the lubricant combinations. The results are compared with baseline B20 biodiesel fuel-mineral lubricant operation. The findings indicate that brake thermal efficiency increases by 8.64% for epoxidised gingelly methyl ester (B100E) with 1.0% w/w alumina (Al2O3) nanoparticle biolubricant in comparison to baseline operation. Considerable reductions in emissions are detected; specifically, reductions of 52.4%, 22.0%, 20.0%, and 34.9%, respectively, are observed for CO, NOx, and HC concentrations and smoke opacity for the abovementioned combination as compared to baseline operation. The present work suggests that further research is merited on green fuel-green lubricant combinations. The findings of this study address the United Nations Sustainable Development Goals (SDGs) 7 and 13.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3