Abstract
AbstractThe golden snub-nosed monkey (Rhinopithecus roxellana) is a rare and endemic species in China. The population of golden snub-nosed monkeys in Sichuan Province has an isolated genetic status, large population size, and low genetic diversity, making it highly vulnerable to environmental changes. Our study aimed to evaluate the potential impact of climate and land-use changes on the distribution and dispersal paths of the species in Sichuan Province. We used three general circulation models (GCMs), three greenhouse gas emission scenarios, and three land-use change scenarios suitable for China to predict the potential distributions of the golden snub-nosed monkey in the current and 2070s using the MaxEnt model. The dispersal paths were identified by the circuit theory. Our results suggested that the habitats of the golden snub-nosed monkey were reduced under all three GCM scenarios. The suitable habitats for the golden snub-nosed monkey would be reduced by 82.67%, 82.47%, and 75.17% under the RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, compared to the currently suitable habitat area. Additionally, we found that the density of future dispersal paths of golden snub-nosed monkeys would decrease, and the dispersal resistance would increase. Therefore, relevant wildlife protection agencies should prioritize the climatically suitable distributions and key dispersal paths of golden snub-nosed monkeys to improve their conservation. We identified key areas for habitat preservation and increased habitat connectivity under climate change, which could serve as a reference for future adaptation strategies.
Funder
the National Natural Science Foundation of China
Sichuan Science and Technology Program
the Second Tibetan Plateau Scientific Expedition and Research Program
the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献