Changes in antioxidant system and sucrose metabolism in maize varieties exposed to Cd

Author:

Li Cong,Cao Yingdi,Li Tianfeng,Guo Meiyu,Ma Xinglin,Zhu Yanshu,Fan JinjuanORCID

Abstract

AbstractDifferent maize varieties respond differentially to cadmium (Cd) stress. However, the physiological mechanisms that determine the response are not well defined. Antioxidant systems and sucrose metabolism help plants to cope with abiotic stresses, including Cd stress. The relationship of these two systems in the response to Cd stress is unclear. Seed is sensitive to Cd stress during germination. In this study, we investigated changes in the antioxidant system, sucrose metabolism, and abscisic acid and gibberellin concentrations in two maize varieties with low (FY9) or high (SY33) sensitivities to Cd under exposure to CdCl2 (20 mg L−1) at different stages of germination (3, 6, and 9 days).The seed germination and seedling growth were inhibited under Cd stress. The superoxide, malondialdehyde, and proline concentrations, and the superoxide dismutase, peroxidase, catalase, and lipoxygenase activities increased compared with those of the control (CK; without Cd). The expression levels of three genes (ZmOPR2, ZmOPR5, and ZmPP2C6) responsive to oxidative stress increased differentially in the two varieties under Cd stress. The activity of the antioxidant system and the transcript levels of oxidative stress–responsive genes were higher in the Cd-tolerant variety, FY9, than in the sensitive variety, SY33. Sucrose metabolism was increased under Cd stress compared with that of the CK and was more active in the Cd-sensitive variety, SY33. These results suggest that the antioxidant system is the first response to Cd stress in maize, and that sucrose metabolism is cooperative and complementary under exposure to Cd.

Funder

Key Technologies Research and Development Program

National Foreign Experts Program of China

Young Scientists Fund

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3