Photoactive titanium dioxide nanoparticles modify heterotrophic microbial functioning

Author:

Bundschuh MircoORCID,Zubrod Jochen P.,Konschak Marco,Baudy Patrick,Frombold Bianca,Schulz Ralf

Abstract

AbstractNanoparticulate titanium dioxide (nTiO2) is frequently applied, raising concerns about potential side effects on the environment. While various studies have assessed structural effects in aquatic model ecosystems, its impact on ecosystem functions provided by microbial communities (biofilms) is not well understood. This is all the more the case when considering additional stressors, such as UV irradiation — a factor known to amplify nTiO2-induced toxicity. Using pairwise comparisons, we assessed the impact of UV (UV-A = 1.6 W/m2; UV-B = 0.7 W/m2) at 0, 20 or 2000 μg nTiO2/L on two ecosystem functions provided by leaf-associated biofilms: while leaf litter conditioning, important for detritivorous invertebrate nutrition, seems unaffected, microbial leaf decomposition was stimulated (up to 25%) by UV, with effect sizes being higher in the presence of nTiO2. Although stoichiometric and microbial analyses did not allow for uncovering the underlying mechanism, it seems plausible that the combination of a shift in biofilm community composition and activity together with photodegradation as well as the formation of reactive oxygen species triggered changes in leaf litter decomposition. The present study implies that the multiple functions a microbial community performs are not equally sensitive. Consequently, relying on one of the many functions realized by the same microbial community may be misleading for environmental management.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3